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Modelling the impact of land subsidence on urban pluvial flooding: a case study of 
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Abstract: This paper presents a numerical analysis of pluvial flooding to evaluate the impact of land subsidence on flood 

risks in urban contexts using a hydraulic model (FloodMap-HydroInundation2D). The pluvial flood event of August 

2011 in Shanghai, China is used for model calibration and simulation. Evolving patterns of inundation (area and depth) 

are assessed over four time periods (1991, 1996, 2001 and 2011) for the downtown area, given local changes in 

topography and rates of land subsidence of up to 27 mm/yr. The results show that land subsidence can lead to non-linear 

response of flood characteristics. However, the impact on flood depths is generally minor (< 5cm) and limited to areas 

with lowest-lying topographies because of relatively uniform patterns of subsidence and micro-topographic variations at 

the local scale. Nonetheless, the modelling approach tested here may be applied to other cities where there are more 

marked rates of subsidence and/or greater heterogeneity in the depressed urban surface. In these cases, any identified 

hot-spots of subsidence and focusing of pluvial flooding may be targeted for adaptation interventions. 
 
Keywords: Land subsidence; Urban pluvial flooding; FloodMap; Shanghai; Adaptation 
 
 
1 Introduction 
 
Pluvial flooding is one of the most common natural hazards in many parts of the world and is attracting growing public 

concern. This coincides with an intensified hydrologic cycle associated with climate variability and change, combined 

with rapid urbanization (IPCC 2007a; Du et al. 2012; Suriya and Mudgal 2012; Zhou et al. 2012; Wu et al., 2013). There 
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are both direct impacts (e.g. personal injury and property damage) and indirect consequences (e.g. interruption to public 

services), particularly in many cities worldwide where rapid urban has growth outpaced the capacity of storm sewer 

drainage. For example, a pluvial flood event in Beijing in July 2011 led to 79 deaths and damages of $1.86 billion. 

Critical infrastructure such as traffic and power systems and residents’ livelihoods were seriously affected (Yin et al. 

2015a). Pluvial flooding is increasingly being reported in developed countries. For example, a government commissioned 

report found that the majority of the damages caused by the 2007 floods in the UK were due to overloaded storm sewer 

systems in developed areas (Pitt 2008). Indeed, pluvial flooding appears to be increasing in many parts of the world (e.g. 

Wu et al. 2013) and it is receiving increased media coverage and policy attention. 
 
Localized factors such as land subsidence may also play a role in urban pluvial flooding. However, the spatial-temporal 

effect of land subsidence on pluvial flood risks has not been fully understood. Widespread occurrence of land subsidence 

caused by natural processes (e.g. tectonic activities) and/or anthropogenic activities (e.g. extraction of oil, gas and 

groundwater) has been reported in many urban environments (e.g. Waltham 2002, Marfai and King 2008, Brown and 

Nicholls, 2015). Land subsidence is recognized as a chronic hazard affecting urban flooding, especially in coastal/delta 

megacities such as Tokyo, Osaka, Shanghai, Taipei, Bangkok, Jakarta, Manila and New Orleans (Dixon et al. 2006; 

IPCC 2007b; Syvitski et al. 2009; Jago-on et al. 2009). The underlying impacts of land subsidence on urban pluvial flood 

can be seen in the form of changes in runoff and flow patterns locally on the land surface. Hence, it is important to 

evaluate pluvial flood hazard by taking into account the temporal variations of urban topography induced by land 

subsidence. 
 
There is a general awareness that sinking land may be responsible for increasing pluvial flood risk in subsidence prone 

cities (e.g. Chan et al. 2012). However, few studies have numerically investigated the relationship between land 

subsidence and pluvial flooding in complex urban communities, largely due to the lack of high accuracy and 
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multi-temporal topographic data. However, the advent of Light Detection And Ranging (LiDAR) techniques (i.e. 

airborne and terrestrial laser scanners), combined with the geodetic techniques (e.g. levelling surveys, GPS surveys, and 

InSAR technique) (e.g. Abidin 2005; Cabral-Cano et al. 2008; Osmanoglu et al. 2011; Yan et al. 2012), and advances in 

high resolution flood modelling techniques (Sampson et al. 2012) have enabled the numerical modelling of dynamic 

urban pluvial flood risks in the context of land subsidence. 
 
In this study, we explore the role of land subsidence in modulating pluvial flooding within an urban centre. Downtown 

Shanghai is used as a case study because the area is prone to flooding from pluvial sources and has been experiencing 

significant long-term land subsidence. We begin by analyzing the spatio-temporal characteristics of urban pluvial 

flooding corresponding to historical land subsidence occurrences. We then interpret probable mechanisms controlling the 

flood patterns. Section 2 describes the materials and methods, including the study site, data availability, model 

description, model construction and evaluation metrics; Section 3 presents the results and discussion. The conclusions 

and some suggestions for further research are given in Section 4. 
 
2 Materials and methods 
 
2.1 Study site 
 
The watershed selected lies in the central Shanghai metropolitan area (the North Huangpu District), bordering the 

Huangpu River to the east and Suzhou Creek to the north (Fig. 1). The watershed is a closed system with two elevated 

highways on the western (South-North Elevated Highway) and southern (Yan’an Elevated Highway) boundaries. The 

floodwalls along the rivers, combined with the elevated highways act as barriers to flow. As such, no water exchange 

occurs across the boundary. The area is ~3.25 km2 and has low-lying topography with an average altitude of about 3 m 

above Wusong Datum. The region experiences a northern subtropical monsoon climate and receives annual precipitation 

of ~1,100 mm. Heavy and extreme rainfalls frequently hit this region during the flood season (June to September) due to 
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the city’s location in the path of tropical cyclones (Yin and Zhang 2015). 
 
The study area has been the downtown part of Shanghai since the mid to late nineteenth century. It therefore comprises a 

typical urban landscape with dense buildings, heavy traffic, impermeable surfaces, and few open green spaces (such as 

the People’s Park, Figure 1). Storm drainage in the form of pumps and sewer systems is the only way to take excess 

storm water from the site. The drainage capacity was generally designed to cope only with a 1 in 1 year rainfall (36 mm/h) 

after the 1990s. The drainage system for the central business district (CBD) has been improved to withstand a 1 in 3 year 

rainfall (49.6 mm/h) since 2002. 
 
Land subsidence has been surveyed in central Shanghai through a combination of levelling (since the 1920s) and GPS 

(since the 1990s). Long term subsidence is due to: (i) relatively constant rates of tectonic subsidence (1 mm/year); and (ii) 

non-uniform compaction of sediments (more than 20 mm/year on average between 1921 and 2007) due to groundwater 

withdrawal, construction of high-rise buildings, and underground engineering (Yin et al. 2013). In some areas, 

cumulative subsidence levels have exceeded 3 m since the 1920s and changed the urban topography remarkably, thereby 

increasing local vulnerability to pluvial flooding (Xu et al. 2008). 
 

    
Fig. 1 Location of the study area, the black dot line divides the area into two parts (i.e. higher standard drainage 
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area-CBD and general drainage area). 
 
 
2.2 Data availability 
 
2.2.1 Precipitation data 
15-minute precipitation totals were obtained for 12 meteorological stations distributed across the study area and adjacent 

regions, for the 12 August 2011 event (a typical summer storm). Distributed precipitation amounts for each time slice 

were interpolated via ordinary kriging between stations (Fig. 2). The event began around 8:00 am and lasted less than 4 

hours, with more than 90% of the rainfall concentrated in the first 45 minutes. The maximum intensity centred initially 

on the southwest and moved to the northeast shortly afterwards (~8:15am). Rainfall accumulation rates of 70–80 mm/hr 

were reported. This corresponds to a ~30-year return period and overwhelmed the local drainage system. Subsequent 

surface flooding of streets and properties then caused considerable damage and traffic disruption in the morning rush 

hour. 
 

 
Fig. 2 Spatial and temporal distribution of precipitation during the 12 August 2011 flood in Shanghai. 
 
2.2.2 Topography and subsidence data 
 
Availability of a recent high resolution topographic dataset and multi-temporal land subsidence rates allowed us to 

reconstruct the historical elevations at multiple points in time. Airborne LiDAR data of the study area in 2006 (with an 

average image separation of 0.6 m) was provided by the Shanghai Survey Bureau. The original LiDAR dataset is 

quality-controlled and segmented using TerraSolid software. A Digital Elevation Model (DEM) was produced with 

non-topographic features (e.g. trees, cars and buildings) removed using classification algorithms in the TerraScan module 
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(Feng et al. 2007). The resulting surface points were aggregated into a raster Digital Terrain Model (DTM) with 

resolution 2 m. Vertical accuracy of the data is estimated to be ± 10~20 cm, commensurate with the typical accuracy 

associated with LiDAR data (Feng et al. 2007). Furthermore, building heights are re-built into the DTM to account for 

blockage effects. 
 
Land subsidence contours (http://www.sigs.com.cn/sigsonlines/) were generated from thousands of subsidence 

monitoring points (e.g. levelling points, GPS, CCD hydrostatic levelling system and 4675 Liquid Level Sensors) 

throughout Shanghai during 1991-1995, 1996-2000, 2001-2005 and 2006-2010 provided by the Shanghai Institute of 

Geological Survey. These data were interpolated to produce land subsidence surfaces with 2 m resolution. Urban 

topographies for 1991, 1996, 2001 and 2011 were generated using arithmetic subtractions and/or summation of the 2006 

DSM and four distributed subsidence maps under the assumption that the area is fully developed and therefore no 

significant changes apart from land subsidence impacts will change the ground elevation. These data have been used in 

previous research on flood risks in the city (e.g. Yin et al. 2015b). 
 
2.2.3 Observed inundation data 
 
Although downtown Shanghai is prone to pluvial flooding, there are no aerial images or field surveys of flood extent for 

the study event. However, discrete point-based flood information does exist in two other forms: 1) water depths from 

electronic gauges operated by the Shanghai Water Authority and typically installed at traffic hotspots of pluvial flooding; 

2) flood incidents reported by the public (“crowd source”) through the web engines (e.g. Google and Baidu) and an 

online official emergency incident reporting portal (http://222.66.79.122/BMXX/default.htm?GroupName=灾情快报). 

Two of the five monitoring points in the study area reported inundation for this particular flood event, but the time series 

measurements are incomplete and unreliable, so they were not used in this study. Crowd sourced data provide extensive 

information, including the location of the property/road affected, a description of its nature and in a limited cases, an 



7  

empirical estimate of inundation depth. However, there are inherent uncertainties in the reported incidents in terms of 

location and timing. Using historical records, we found that the timing and magnitude of a crowd-sourced incident are 

most uncertain and in many cases incomplete. For all records, the time when an incident is reported is recorded and only 

in very limited cases the actual time of flood occurrence is submitted. Similarly, the magnitude is rarely reported and can 

be highly unreliable. The location component associated with a crowd-sourced data point is often comparably more 

reliable. Most incidents have an associated house number or business address, although many lack a precise location 

apart from a brief description of the flood site, making them difficult to geo-locate at a street resolution. With the 

improvement of geo-referencing in online map providers such as Google and Baidu, we are able to pinpoint 17 incidents 

where locations are confidently identified. 

 
2.3 Model description 
 
To derive pluvial flood risks associated with different urban landscapes associated with land subsidence, we use the 

hydro-inundation model (FloodMap-HydroInundation2D) (Yu and Coulthard 2015). Here we present the major structure 

of the model. The model couples hydrological processes with flood inundation for high-resolution pluvial (surface water) 

flood modelling in urban environments. Surface flow routing takes the same structure as the inertial model of Bates et al. 

(2010), but with a slightly different approach to the calculation of time step. Rather than using a global 

Courant-Freidrich-Levy Condition where the time step for the next iteration is calculated based on the maximum water 

depth and velocity found at the last time step (e.g. Bates and De Roo 2000; Yu and Lane 2006a), the Forward 

Courant-Freidrich-Levy Condition (FCFL) approach described in Yu and Lane (2011) for the diffusion-based version of 

FloodMap is used in the model to calculate time step. Assuming slow moving flow when the convective acceleration 

term in the Saint-Venant equation can be neglected, the momentum equation becomes: 
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Flows in the x and y directions are decoupled and take the same form. Flow is evaluated at cell edges, depth at the centre. 
 
Infiltration over saturation is represented by the widely used Green-Ampt equation, which approximates the rate of 

infiltration as a function of the capillary potential, porosity, hydraulic conductivity and time, taking the following form: 

(ݐ)݂ = ௦(ఝାܭ
௭ + 1)                    (4) 

Where ܭ௦ is the hydraulic conductivity of the soil at field saturation, ߮ is the capillary potential across the wetting 

front, ℎ is the ponding water on the soil surface, and ݖ is cumulative depth of infiltration. Hydraulic conductivity is 

often used as a calibration parameter in hydrological studies but for an urban environment like Shanghai, this is not 

defensible because of the largely impervious nature of the landscape (see section 2.4 for further details). 
 
Evapotranspiration is calculated using a simple seasonal sine curve for daily potential evapotranspiration (Calder et al. 

1983) with the equation below: 

ܧ = [1ܧ + sin (ଷ
ଷହ − 90)]                    (5) 

Where ܧ is the mean daily potential evapotranspiration and i is the day of the year. The amount of mass loss to 

evapotranspiration is typically limited due to the short duration of urban pluvial flooding. 
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To account for urban storm drainage capacity, mass loss to the storm sewer system is considered in the model using the 

design capacity, which corresponds to a rainfall event of certain intensity (mm/h) and return period. If the model is 

applied to an extreme event (defined here as a > 1 in 100 year), it is reasonable to assume that the storm sewer system 

drains water away at the maximum design capacity. For each time step, the amount of runoff loss to the urban storm 

sewer system is calculated by scaling the drainage capacity (mm/hour) for the time step. Distributed drainage capacity 

can also be incorporated into the model on a cell by cell basis. Note that manholes and drains were not explicitly 

represented by the model (as in Liu et al. 2014). Rather, the drainage capacity is considered an aggregate volume that 

equates to the design capacity throughout that whole area. 
 
2.4 Simulation design and model calibration 
 
In order to quantify the impact of land subsidence on urban pluvial flooding, simulations were performed by considering 

urban terrain changes only, assuming that other factors (e.g. drainage capacity) remain constant from 1991 to 2011. 

Calibration and validation were performed by comparing model prediction with observed data of 12 August 2011 pluvial 

flood event presented in Section 2.2.3. Drainage capacity used in calibration takes a uniform value of 36 mm/h. The 

calibrated FloodMap-Inundation model was then run using 1991, 1996, 2001, 2006 and 2011 urban topographies for a 

four hour simulation (8:00 to 12:00) of the event.  
 
A 2 m DEM was used to represent the urban topography, with building blocks re-built into the digital terrain model 

derived from LiDAR, where heights associated with vegetation and buildings were originally removed. This essentially 

allows the blocking effect of urban features to be represented explicitly in the modelling. This is also related to the 

specification of a high roughness value (see below). A coarser mesh of 4 m was attempted but the results were much 

degraded due to the inadequate representation of micro-topography. Yu and Coulthard (2015) evaluated the sensitivity to 

mesh resolution in a much larger domain with a mixture of urban and rural features. Given the focus of the present study, 
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a 2 m resolution simulation was regarded as a legitimate trade-off between computational demand and simulation detail.   
 
Evapotranspiration is specified at 3 mm/day, a value that can be neglected for short-duration intense rainfall in urban 

environment (Yu and Coulthard 2015). Roughness and hydraulic conductivity are key parameters for model calibration. 

An initial screening was undertaken to constrain the possible range of values for these two parameters in simulating this 

particular flood event. A hydraulic conductivity (ܭ௦) value between 0.001 m/h and 0.003 m/h was found to yield skill 

when the model results were qualitatively compared with reported flood incidents and monitoring points. Given the 

urbanized nature of the study area, a hydraulic conductivity value of 0.001m/h was used in the remaining simulations.  
 
Model sensitivity to roughness parameterization was evaluated by varying the Manning’s n value (between 0.01 and 0.1 

at 0.01 increments), whilst maintaining hydraulic conductivity at 0.001 m/h. Consistent with Yu and Coulthard (2015), 

the model was found to be relatively insensitive to roughness specification for this simulation. A relatively high 

roughness value of 0.06 was used in the simulations, reflecting the effect of urban features (e.g. buildings) on flow 

routing. The default drainage capacity of the urban areas was assumed to be 36 mm/hour. We recognize this is likely to 

be a simplification considering the rapid development of the downtown area between 1991 and 2006. However, to focus 

on the effect of land subsidence alone, we deliberately keep this simplification in our simulations. 
 
2.5 Inundation change detection 
 
Two standard metrics were used to quantify spatio-temporal changes in flood inundation between simulations. These 

were the Fit statistic (F) and Root Mean Square Deviation (RMSD). In each case, the 1991 run was used as the reference 

simulation and both measures were calculated against this baseline. The F statistic is particularly suitable for the 

comparison of inundation extents as it focuses on how the simulated wet areas agree with the reference (Bates and De 

Roo 2000; Horritt and Bates 2001). The statistic was calculated as follow: 
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ܨ = ܣ
ܣ + ௦ܣ − ܣ

 

where Ar is the referenced wet areas, As is the simulated wet areas, and Ao is the overlapped wet areas of Ar and As. The F 

statistic varies between 1 for a perfect fit and 0 when no overlapped inundation area exists. 
 
The RMSD is widely used for assessing difference on average in water depths between two paired simulations, on a cell 

by cell basis (Yu and Lane 2011). It can be defined as: 

RMSD = ඨ∑ (݀௦ − ݀)ଶୀ ݊  

where ݀௦ and ݀ are the simulated and referenced water depths respectively, i is the index of the wet cells and n is the 

total number of wet cells in the prediction and observation. 
 
3 Results and discussion 
 
3.1 Model simulations for the August 2011 pluvial flood event 
 
The time evolution of precipitation at Huangpu Park and propagation of predicted inundation for the 12 August 2011 

event are presented in Fig. 3 and Fig. 4, respectively. During the first 15 minutes of the simulation, water depths are 

shallow and flow routes along roadside curbs. Given the low relief, extensive surface flooding occurs from 8:30 am 

throughout the road network, mostly with water depth greater than 10 cm. Maximum inundation extent (~10% of the 

downtown area) and depths are reached shortly after the peak rainfall at 9:00 am. As the simulation progresses storm 

water is funnelled towards low-lying areas where water depth exceeds 30 cm in some places. Thereafter, as the rainfall 

subsides, flood water gradually recedes due to storm sewer drainage, evapotranspiration and infiltration. 
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Fig.3 Precipitation at Huangpu Park and predicted total inundation area over time (baseline simulation). 
 
Predicted maximum inundation depth and monitored/reported flood locations across the study area during the event were 

used to evaluate the model simulation (Fig. 5). There is a good match between the simulated inundation and observed 

flood incidents, especially in terms of the prediction of severely inundated areas where water depth exceeds 20 cm. All of 

the 17 flooded points fall within the predicted flood areas with a water depth greater than 10 cm, and the majority exceed 

20 cm. This agrees well with the reported estimates. However, the flood extent and depth in the southwest part of the 

domain appear to be overestimated as there were no reported incidents for this area. 
 
3.2 Subsidence effect on maximum inundation 
 
The spatial difference in maximum water depth between the 1991 reference simulation and subsequent years (i.e. 1996, 

2001 and 2011) are shown in Fig. 6, alongside land subsidence maps for the corresponding periods. Overall, the spatial 

distribution of water depth changes are characterized by a high degree of consistency among the four scenarios. However, 

results show that land subsidence may lead to non-linear impacts on the spatial distribution of inundation. The impact is 

controlled by both site-scale (watershed) distribution of subsidence and micro-topographic variations at the local scale.  
 
First, the overall pattern of flooding response is the accentuation of pluvial flooding at the subsidence centre (i.e. the 
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central part of the study site in Fig. 6) and alleviation in adjacent areas. However, due to the non-linear rates of change 

and non-uniform patterns of subsidence between different time slices, the change in flooding is also non-uniform. For 

example, the funnel area at the road junctions has increased flooding between 1991-1995 and 1996-2000. The risk is 

decreased between 2000-2005 and increased again between 2005-2010. 
 
This observation points to the second controlling factor, namely micro-topography at the local scale. For instance, Fig. 5 

shows that water depth in the funnel areas tends to be deeper, due to flow routing from constituent roads. Where positive 

subsidence slopes towards crossroads, flooding tends to be aggravated at the receiving sites, and vice versa for the 

adjacent roads. Therefore, existing local topographic characteristics and subsequent relative land subsidence play an 

important role in either exacerbating or reducing water depth changes over time. 
 
In addition, areas with significant difference in water depth tend to be associated with more intense rainfall. On the 

contrary, in the relatively flat region to the southwest where large open spaces are present and less rainfall in total is 

recorded, free flow routing occurs to a less degree and ponding in the local surface is the typical outcome. 
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Fig.4 Time series of predicted inundation depth for the August 2011 pluvial flood event. 
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Fig.5 Predicted maximum inundation depth overlain with monitored/reported flooding during the event. 
 
To further investigate model simulations at the local scale, a 300 m road section (within the black box shown in Fig. 6) 

was used to explore in more detail the interplay between topographic changes and flood response. Profiles of the ground 

elevation and maximum water depth (MWD) associated with each simulation along the road transect are shown in Fig. 7. 

The road surface profile appears to be high and steep at both ends but low-lying and slightly sloping to the east in the 

middle section. As expected, the profiles of surface elevation on different DSMs show significant negative correlations (r 

= - 0.9) with corresponding profiles of MWDs. This leads to the conclusion that local flood response to land subsidence 

is a function of the relative relief to surrounding area rather than the absolute magnitude of change in ground level. It is 

worth noting that as land subsidence developed, the west section of road experienced more rapid subsidence from 1991 

to 2001, tilting the road elevation towards a more symmetrical slope profile. As a result, the corresponding MWDs 

increase proportionally to the west and the east section becomes correspondingly shallower. By contrast, differences in 

the simulated MWDs after 2001 are indiscernible because of the almost parallel surface profiles induced by largely 

uniform rate of land subsidence along the road, making pluvial flood less sensitive to decreases in road surface elevation. 
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The inundation area and percentage change in water depth are summarized in Table 1 for each period. Overall, the impact 

of land subsidence on urban pluvial flooding is minor for this study, in terms of both the inundated area and depth. 

Results also reveal that the change in inundation depth is significantly less (about 10%) than the magnitude of land 

subsidence at the same location. For approximately 94% of the total area the relatively low rate of land subsidence 

exhibits no obvious difference (-1~1 cm) in water depth in all the scenarios. The areas with increased water depth (> 1 

cm) only account for around 2% of the total. Areas with decreasing water depth (< -1 cm) make up the remaining 4%, 

indicating that the beneficial impact of land subsidence is greater. With long-term land subsidence, there has been an 

overall increase in areas associated with water depth changes except in the 2011 simulation which shows a slight 

reduction for some road sections. The overall pattern of change is controlled by the watershed-scale subsidence 

characteristics. However, the impact can be site-specific and determined by the complex interplay among subsidence 

magnitudes, micro-topographic characteristics and the intensity of precipitation at the local scale. As the city changed 

drastically in the last few hundred years (Wei et al. 2010), compared to the rapid development stage (up to 1.69 m on 

average for urban area) from 1921 to 1965, land subsidence during the past 20 years (1991-2010) was controlled at a 

relatively low degree with stricter measures (e.g. reducing groundwater exploitation, artificially recharging and adjusting 

the exploitation aquifers), thus making it less vulnerable to pluvial flooding. 
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Fig.6 Accumulated land subsidence rate (left column) and change in maximum inundation depth (right column). Black 
box is where road elevation and water depth profiles are plotted in fig. 7. 
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Fig.7 Profiles of ground elevation and maximum water depth (MWDs) along the black boxed road in Fig.6. The straight 
dotted lines represent the trend lines for various road profiles, the right axis scale (in blue) was inverted to better show 
MWD changes in relation to ground elevation profiles at different times (i.e. 1991, 1996, 2001, 2006 and 2011). 
 
Table. 1 The area (m2 and percentage of simulation domain) subject to different changes in flood depth (cm) 
Change in 

water depth 
(cm) 

1991-1995 1991-2000 1991-2005 1991-2010 
Area (m2) Percentage 

(%) 
Area (m2) Percentage 

(%) 
Area (m2) Percentage 

(%) 
Area (m2) Percentage 

(%) 
< -5 3704 0.11 8976 0.28 11396 0.35 11024 0.34 

-5 ~ -3 8320 0.26 17400 0.53 20244 0.62 17920 0.55 
-3 ~ -2 21712 0.67 33940 1.04 28416 0.87 27680 0.85 
-2 ~ -1 66944 2.06 68040 2.09 69812 2.15 71064 2.18 
-1 ~ 1 3110544 95.60 3062900 94.14 3053420 93.85 3050288 93.75 
1 ~ 2 28112 0.86 40728 1.25 44480 1.37 47940 1.47 
2 ~ 3 6868 0.21 10448 0.32 12988 0.40 13872 0.43 
3 ~ 5 4056 0.12 6396 0.20 7428 0.23 8404 0.26 
> 5 3400 0.10 4828 0.15 5472 0.17 5460 0.17 

 
3.3 Subsidence effect on time series of inundation 
 
Time series (5 minutes interval) of F-statistics and depth RMSD referenced to the corresponding 1991 simulation for 

each scenario are shown in Fig. 8. These reveal that although the corresponding Fit and RMSD profiles of each 

simulation display a similar shape and high spatio-temporal agreement when compared with the corresponding 1991 
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reference, there are clearly deviations in the predicted inundation extent and depth under different simulations. The 

impact in terms of inundation extent and depth is generally proportionate to the rate of land subsidence throughout the 

simulations for each period. The sensitivity and response of both measures to land subsidence can be readily 

distinguished. However, the temporal differences in F statistics between 2006 and 2011 simulations are less marked due 

to the relatively slow subsidence rates (~5 mm/year) during the period. It is also noted that for the depth RMSD curves, 

the impact of land subsidence between 2005 and 2010 is predicted to be less than that for 2000 to 2005. The findings 

support those in section 3.2 and further suggest that in addition to the rate of land subsidence, the spatial variation in 

relative topographic relief at a local scale affects the distribution of flooded extent and depth. Although land subsidence 

continues, the spatial variation diminishes up to 2006, when the rate of land subsidence begins to stabilize. Topographic 

variations within the modelled domain become less marked and hence the funnel area is less discernible over time, 

potentially alleviating the adverse impact arising from land subsidence. Given that the chosen watershed is one of the 

most severely affected areas by land subsidence in Shanghai, it is expected that similar findings will also hold for other 

watersheds in the city. However, depending on the relative rate of land subsidence across a watershed, other regions 

might exhibit dissimilar response patterns. 
  

 
Fig.8 Time series of F statistics and depth RMSD for each period 
 
3.4 Future perspective and adaptation measures 
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Future subsidence in Shanghai is expected to stabilize or slow down due to stricter adaptation measures (Yin et al. 2015b). 

According to the land subsidence prevention plan outlined in the Shanghai ‘12th Five-Year (2011-2015) Plan’, the 

average rate of citywide land subsidence will be stabilized at 6 mm/year or lower after 2011 and the development of 

uneven settlement will be effectively alleviated in the near future by a wide range of management and engineering 

measures, such as groundwater recharge. For the study area, the reported annual subsidence is even lower than 5 mm 

during recent years, which is consistent with the targeted value (Shanghai Geological Environmental Bulletins 

2011-2013). Given the control measures, land subsidence is expected to be further alleviated, although uncertainties are 

inherent in the longer term. This may lead to changes in future flood risks over time.  
 
Flood resilience measures could be implemented to further reduce pluvial flooding due to land subsidence. As the flood 

response is relatively minor for the majority of subsidence area, appropriate adaptations may only need to be targeted at 

specific areas with significant changes in relative relief. Several means of adaptation can be addressed individually 

and/or as an integrated approach in this case, taking into account the increased flood risks due to other factors (such as 

more intense rainfall). For example, upgrading the drainage system and reduction of impervious area would be the most 

effective but costly options. In addition, underground spaces (such as garages) could be used as temporary emergency 

storm water reservoirs in highly affected areas. Finally, low impact measures such as lowering the surface elevation of 

green open spaces, and construction of green roofs and permeable pavements may be beneficial. 
 
4 Conclusions 
 
This paper evaluates the potential impact of land subsidence on pluvial flooding using an urban hydro-inundation model. 

This is the first attempt to apply high resolution 2D hydraulic modelling to Shanghai for evaluating pluvial flood 

responses to topographic changes in urban sites, providing detailed insight into the complex interaction between land 

subsidence, precipitation and changing flood risks. A number of conclusions can be drawn from the results. Overall, land 
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subsidence may lead to non-linear, moderate impacts on the spatio-temporal distribution of pluvial flooding (i.e. extent 

and depth) in high density urban areas. The pluvial flood response to land subsidence essentially involves dynamic storm 

water routing across a changing landscape. The relative impact mainly depends on the interplay between the 

watershed-scale distribution of relative subsidence and micro-topographic characteristics at the local scale. In the case of 

Shanghai, much of the subsiding area shows minor to moderate changes (< 5 cm) in water depth and in some parts of the 

city risk even decreases. Larger land subsidence effects can only be found at specific-sites with significant focusing of 

water and/or changes in relative relief. However, it must be noted that the findings from this study are likely to be 

site-specific. The response of surface water flooding to land subsidence might be different for sites with different 

topographic characteristics, especially where the terrain is more sloped. 
 
The analysis improves understanding of the relationship between evolving land subsidence and changing pluvial flood, 

and thus helps to support decision-making in sustainable flood risk management and land subsidence control for 

subsiding cities. However, to fully understand the impacts, further research is needed to: 1) investigate the sensitivity of 

our findings to different rainfall events (magnitude, temporal and spatial distribution of amounts); 2) couple 1D sewer 

flow (surcharging) with 2D overland flow modelling; 3) consider possible subsidence-induced damage or malfunction of 

drainage system; 4) concentrate on further evaluating the impact of land subsidence using different model domains; and 5) 

more case studies could be undertaken in different urban environments with more complete subsidence datasets. Finally, 

further work is needed to include adaptation modelling and assessment. This will allow decision makers to prioritize 

adaptation investment in terms of site selection and portfolio of measures applied. 
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