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Abstract: Spurious change is a common problem in urban vegetation change detection by 

using multi-temporal remote sensing images of high resolution. This usually results from 

the false-absent and false-present vegetation patches in an obscured and/or shaded scene. 

The presented approach focuses on object-based change detection with joint use of spatial 

and spectral information, referring to it as multi-level spatial analyses. The analyses are 

conducted in three phases: (1) The pixel-level spatial analysis is performed by adding the 

density dimension into a multi-feature space for classification to indicate the spatial 

dependency between pixels; (2) The member-level spatial analysis is conducted by the  

self-adaptive morphology to readjust the incorrectly classified members according to the 

spatial dependency between members; (3) The object-level spatial analysis is reached by 

the self-adaptive morphology involved with the additional rule of sharing boundaries. 

Spatial analysis at this level will help detect spurious change objects according to the 

spatial dependency between objects. It is revealed that the error from the automatically 

extracted vegetation objects with the pixel- and member-level spatial analyses is no more 

than 2.56%, compared with 12.15% without spatial analysis. Moreover, the error from the 

automatically detected spurious changes with the object-level spatial analysis is no higher 

than 3.26% out of all the dynamic vegetation objects, meaning that the fully automatic 

detection of vegetation change at a joint maximum error of 5.82% can be guaranteed. 
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1. Introduction 

The presence and change information about the layouts and abundances of urban vegetation is most 

useful in modeling the behaviors of urban environment, estimating carbon storages and other 

ecological benefits of urban vegetation [1–3]. Remotely sensed imagery is an important source data 

available to characterize changes systematically and consistently [4]. Despite both frequent criticism 

and the availability of many alternatives, change detection from remotely sensed imagery still remains 

one of the most applied techniques due to its simplicity and intuitive manner [5]. 

Change detection techniques can be broadly grouped into two objective types: change enhancement 

and “from–to” change information extraction. These techniques also have two handling manners: 

pixel-based and object-based change detection [6,7]. The proposed approach is for extracting from–to 

change information of urban vegetation by the object-based manner and with joint use of spatial and 

spectral information provided by remote sensing images. A single object may represent an individual 

tree crown or several adhered crowns and also probably a vegetation-covered region with mixed tree, 

shrub and grassland. The minimum mapping object is three meters in diameter which is usually 

associated with the single crown of a younger tree. The approach is thus defined as being at individual 

tree scale.  

It has been revealed that the traditional image differencing method only occasionally works 

properly due to the effect from the varying illumination levels associated with the changes in season, 

sun angle, off-nadir distance etc. [3,8]. The efforts to improve this have mainly focused on making the 

radiation levels of the image pair consistent or acquiring the quantitative correlation between the 

radiation levels of the image pair. The image rationing method [9] is an example of the former; the 

regression method [10] and change vector analysis [11] are dedicated to the latter. However, such 

global analysis of radiation level for a whole image, discerning or not discerning different classes, is 

often difficult to adapt to the change detection of urban micro-scale objects. 

The difficulty is usually caused by the heterogeneous internal reflectance patterns of urban landscape 

features associated with shadowing effects and off-nadir issues that are not constant through time due 

to variations in sun angle and sensor look angle. Vegetation object pairs in dual-temporal images often 

tend to be different even if no vegetation change occurs within the considered time interval [12,13]. 

Several works related to the identification of shaded members have been reported [14–16]. Some of 

them assigned the whole shaded surfaces into a single class, probably limited by the poor separability 

between different shaded classes which is often beyond the capabilities of applied classification 

methods [14,15]. Although some researchers have paid attention to the detection and reconstruction of 

shaded scene, due to the difficulties in compensating for each band of weakened reflections in  

the scene, thus far, only visually as opposed to spectrally, can reconstructed shadow-free imagery be 

obtained [17–20]. 

Object-based image analysis (OBIA) and Geographic OBIA (GEOBIA) have become very popular 

since the turn of the century. In order to contend with the challenges associated with extracting 

meaningful information from increasingly higher resolution data products, GEOBIA focuses on the 

spatial patterns many pixels create rather than on only the statistical features each individual pixel 

owns [21,22]. Many practicable methods for automatically delineating and labeling geographical 

objects have been developed [23]. Most of them are linked to the concept of multi-resolution 
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segmentation (MRS) [24]. MRS relies on the scale parameter (SP) [25], and the spatial connectivity of 

homogeneous pixels in a given scale, to partition an image into image objects. However, as for some 

certain applications, such as mapping vegetation at individual tree scale in a downtown area using  

high-resolution data, it is a severe challenge to decide the SPs because the vegetation-covered surfaces 

are often surrounded by buildings and other urban facilities resulting in locally random radiation noises 

superimposed on their already very complex layout. Consequently, there is no access to proper scale(s) 

being able to capture the normal and the noise-contaminated pixels in the same time therefore making 

the knitted objects incomplete. 

In order to provide a possible solution to it, a frame of multi-level spatial analyses is put forward in 

this paper. Based on the fact that some of the spatial patterns (e.g., distance and density, etc.) created 

by the neighboring pixels of a certain pixel may help label the pixel, the patterns are formulated as a 

“density dimension” that takes the density of neighboring pixels similar in attribute to the center pixel 

as an indicator of their homogeneity. The indicator is added to the feature space to present the spatial 

dependency between pixels for better classification accuracies. The labeled pixels and patches by the 

classification are called as members and serve as object candidates. In addition, it is not rare that a 

member or object is geographically adjacent to another involved in a similar class even though their 

attributes are completely distinct, such as shaded patches connecting to sunlit ones and spurious 

change objects being adjacent to stable ones. Such spatial dependency can be formulated therefore 

detected. This lays the conceptual foundation for further spatial analyses in another two levels: 

member and object. The former can be applied to further improve the member accuracy and the latter 

is useful in detecting spurious changes and repairing the defects on original objects by comparing a 

pair of objects in two date images. Thus the objective of detecting urban vegetation change with better 

accuracy and automation can be reached. 

2. Study Region and Data Collection 

Figure 1 shows the study region. 

The test images were randomly selected from nine groups of false-color aerial near-infrared (NIR) 

images, referred to as “NIR images” in the following text, in a time sequence from 1988 to 2006. The 

images were purchased from the geographic information service institution of the government. The 

sensor aboard on was a kind of photogrammetric camera. The original photographic scales were from 

1:8000 to 1:15,000 and therefore the spatial resolution at nadir is better than two meters. The original 

size of photo was 23 cm by 23 cm and they had been assembled into a complete image for each  

sub- test-region and each date with the geometric and the orthographic corrections before selling. The 

used film was sensitive to the reflection of NIR band. The photo colors of red, green and blue indicate 

NIR (760~850 nm), R (red, 630~690 nm), and G (green, 520~600 nm) bands, respectively. In addition, 

it is a common characteristic of object-based change detection that the detecting accuracy mainly 

depends on the accuracy of extracting individual object and ignores the spectral similarity between the 

pairs of images from where the object is extracted. Therefore, the radiation correction of individual 

image (e.g., atmospheric adjustment) is not as essential as that for the pixel-based change detection. 
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In Shanghai, likewise with all rainy southern cities in China, NIR images are widely used for city 

surveying and mapping due to the difficulties in acquiring satellite images all seasons with lower cloud 

cover. Therefore, it is desirable for them to gain access to the technology of detecting vegetation 

change from such NIR images. 

Figure 1. The study region is in the downtown area of Shanghai, located on the eastern 

coast of mainland China. There are three involved sub-regions shown with small red circles 

in (a). Only sub-region 2, the main test region, has multi-temporal images. (b) gives a more 

detail image of this sub-region. The yellow rectangles in it show case test sites in following 

figures and the strings starting with “F” denote the figure numbers. Both the two back 

images were downloaded from the Google Earth. 3. Methods. 

 

3. Methods 

3.1. Overview 

As mentioned previously, the spatial analyses are conducted in three phases. (1) The pixel-level 

spatial analysis is performed by adding the density dimension to a feature space for classification to 

indicate the inter-pixel dependency for each pixel; (2) The member-level spatial analysis is conducted 

by the self-adaptive morphology to readjust the incorrectly classified members according to the  

inter-member dependency rule; (3) The object-level spatial analysis is realized by the self-adaptive 

morphology involved with the presetting inter-object dependency rule. The detected spurious changes 

will be used to repair both dual-temporal vegetation object sets. The added, stable and subtracted 

objects and the repaired vegetation objects can be finally obtained. Figure 2 shows the flowchart. 

MATLAB served as the simulation testing tool. 
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Figure 2. The flowchart of the multi-level spatial analyses. 

 

3.2. The Pixel-Level Spatial Analysis 

In this phase, the whole image will be classified to the members of different classes through 

supervised classification. Due to the obvious differences in spectral feature between sunlit and shaded 

objects and the obvious differences in textural feature between tree and grass on remote sensing 

imagery of a given resolution, the original six classes include: sunlit tree, shaded tree, sunlit grass, 

shaded grass, bright background and dark background (involving shaded background and other dark 

surfaces such as water). Support vector machine (SVM) [26] serves as the model of classifier. In order 

to make the complexity of the feature space adapt to the number of classes and to highlight the 

differences in image features between these classes, two spectral and two texture features are  

utilized (Table 1 [19,27–29]). 
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Table 1. Four features for the classification. 

Sign Name Meaning Applicability 

NDVI 

Normalized 

Difference Vegetation 

Index [27] 

NDVI = (IR − R)/(IR + R) 

where IR and R are the DNs of NIR and red bands, 

respectively. 

Distinguishing between 

vegetation and background. 

NDSV 

Normalized Difference 

of Saturation and 

Brightness [19] 

NDSV = (S − V)/(S + V)  

where S and V are saturation and brightness in the 

Hue- saturation-brightness color system. 

Distinguishing between 

shaded vegetation and  

dark background 

Cd 
Density of  

low-NIR pixels  

Cd = Sp/A [a] 

where Sp is a supplemental pixel set.  

Sp = {BWlow∩!BWhigh,   

BWlow|NDVI > a × TNDVI & SAVI > 1.5 × a × TNDVI, 

BWhigh|NDVI > TNDVI}
[b,c] 

Extracting winter 

deciduous tree crowns. 

Dd 
Density of dark  

details [28] 

Dd(k) = COUNT(BWd(k))/Aplant(k) 
[a,d]

dcIseIBWIBWBW ddd ×>−•⊆= )(|,{  
where BWd(k) is the kth block of a binary image 

of dark detail; d is the mean size of dark detail; I is a 

gray image; • and se, the sign of morphological 

closing and its structure element; c is a coefficient.  

Dd is sensitive to the 

variations of crown 

roughness. Different Dd 

matrices involved with d 

can often server as 

independent features in a 

feature space (e.g., the 

example in Figure 3). 

[a] A = Block area; Aplant = vegetation-covered area in a block. [b] BWhigh and BWlow = Binary images of 

vegetation cover associated with normal and lowered thresholds respectively. SAVI = Soil-adjusted 

vegetation index [29]. The condition of SAVI > 1.5 a·TNDVI can often work well for BWlow to extract low-NIR 

reflection crowns where a is of a coefficient with the experimental defaults of 0.6 in summer and 0.3 in 

winter, respectively. [c] TNDVI = The threshold for the segmentation of NDVI with a widely used experimental 

default of 0.17 for extracting vegetation from NIR images. [d] COUNT(•) = Counting function for the 

number of true members in a binary image. 

Besides the four descriptors, the density dimension, denoted as De, is added to the feature space. 

De can be understood as a “feature of feature” and is formulated as a density distribution function of 

multiple features (Equations (1) and (2)). Each element in De represents the density of homogeny 

neighboring elements. A homogeny element means the pixel with a feature tuple that falls within the 

tuple of the center element with a given tolerance. With the two equations, the inter-pixel dependency 

for each pixel can be locally defined in a multi-feature space. 

De(i,j) = COUNT(BW(i,j)n)/n
2 (1)

and 

1 1( , ) ... ( , ) ... ( , )k k m mp F i j dF F i j dF F i j dF∀ = ± ∩ ± ∩ ±  (2) 

where De(i,j) is the ith row and jth column element of De; BW(i,j)n is a n-by-n binary image in which 

each true member meets the condition formulated as Equation (2); p is a pixel of BW(i,j)n; Fk is the kth 

feature (k = 1, 2, …, m) while dFk represents its tolerance which is experimentally specified as 2% to 

5% of the whole range of Fk. 
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Figure 3 gives an example of the classification with and without De. It can be seen that the 

identification between different shaded members has been obviously improved by adding De. This may 

benefit from three novelties: (1) The scale-labeled segments by MRS are replaced with a density field 

defined by De. The field helps cluster those pixels spatially depart from the patches knitted by other 

connecting pixels; (2) The homogeneity of pixels is indicated by the density of similar neighboring 

pixels rather than by SP of MRS. This makes the approach own a better tolerance to image noises;  

(3) The PS is replaced with dFk. The impact of the accuracy of selecting dFk is far less than that of 

selecting PS on the classification accuracy. Benefiting from it, a small and relatively stable default of 

dFk can serve as the tolerance for a single-level segmentation to offer a finer homogeneity between 

pixels, and the spatial patters created by these homogeneous pixels can be indicated by their density at 

the same time. Our experiments have revealed that these novelties have great potential for extracting 

illegible details, such as shaded vegetation members. 

Figure 3. An example of classification in the feature space of NDVI, NDSV, Cd, Dds, Ddm 

and De where Dds, Ddm are of two cases of Dd involved with the dark details of small and 

middle sizes, respectively. (a) The original image; (b) the members classified in the feature 

space including De; and (c) the members classified without using De. It can be seen that 

shaded tree and dark background members, if without De, are often mistaken for shaded 

grass (e.g., those in the elliptical and rectangular regions of different colors) but 

significantly improved by adding De. The test-site locates at sub-site 3 (See Figure 1a). 

 

3.3. The Member-Level Spatial Analysis 

There are four main steps in this phase: (1) removing noises (Section 3.3.1); (2) readjusting 

misclassified members based on the member-level spatial analysis (Section 3.3.2); (3) knitting 

vegetation members into objects (Section 3.3.3); and (4) refining objects by interaction (Section 3.3.4). 

3.3.1. Removing Noises 

Some seriously discrete smaller members should be dealt with as noises before the readjusting to 

save computational costs because the vegetation members will be individually analyzed afterwards. 
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With the morphological closing, small neighboring members of the same class will be spatially 

integrated; the rest (those discrete smaller members) will then be removed by area filtering. 

3.3.2. Readjusting Misclassified Members Based on the Member-Level Spatial Analysis 

After removing the noises, the confusion between shaded grass and dark background members  

is still commonly apparent, thereby seriously damaging the accuracy of the member. Instead of simply 

reassigning smaller members by the surrounding majorities as the way of MMUs [5], we use the  

self-adaptive morphology to depict the inter-member dependency for a more reliable reassigning. 

Based on the member-level spatial analysis, each misclassified dark grass member will be readjusted 

according to the inter-member dependency rule. The dependency for each member can be typically 

indicated by the density of the neighboring members of involved classes. According to the density, it 

can be decided whether the center member should be removed as a misclassified or morphologically 

closed with other involved members. The rule can be formulated as Equation (3). 

( ) ( ) 1

( ) ( ) 1

! , |

, |
sg sg i sg i

sg
sg sg i t sg i

BW M M R T
BW

BW M SE M R T

< 
=  • ≥ 




 (3)

where BWSg is the binary image of shaded grass member; MSg(i) is the ith member in BWSg; R is the 

density of sunlit vegetation member in the dilated region of MSg(i); T1 is the lower threshold of density 
with an experimental default of 0.1; • is the sing of morphological closing; SEt is the structural element 

with a given size t and t = ROUND(h·R) where ROUND(·) is the rounding function; h is a coefficient 

with an experimental default of 20, thus limiting t from 2 to 10. 

The self-adaptive morphology is reached by adaptively adjusting t which is the size of the structural 

element associated with R. The higher the R is, the larger the t will be, and the more the neighboring 

members will be closed. The algorithm is based on the fact that the higher the R is, the more the 

members of involved classes around the center member there are and the lower the probability that the 

central member belongs to noise is. By adjusting t adaptively, the center member can be enlarged to an 

appropriately integrated vegetation patch. Thus a significant improvement on the accuracy of member 

can be expected. Figure 4 gives an example. 

3.3.3. Knitting Vegetation Members into Objects 

The readjusted members are still scattered and mixed with each other between classes. In general, 

as long as the members of a class are closely clustered, they can be morphologically knitted to 

objects, such as bonding discrete members into objects by morphological closing, smoothing object 

boundaries by morphological opening and removing smaller discrete members by area filtering. 

Figure 5c gives an example. 

In addition, the member-level spatial analysis can also be used to further remove false concaves 

inside vegetation patches. If a dark background patch is surrounded by a far larger vegetation patch, 

the former is most likely of a false concave. The area ratio of the former to the latter can serve as a 

measure for the readjustment. The smaller the ratio is, the higher the probability of the member 

belonging to a false concave is. Figure 5a,b provide an example. 
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Figure 4. Readjusting members by the member-level spatial analysis. (a) Original image 

and the samples of sunlit grass (apricot cross) and shaded grass (olive-green cross);  

(b) originally classified members; and (c) originally classified shaded grass members 

(white patches) and ensured ones (magenta sketched). It can be seen that the once poor 

separability between shaded grass and dark background members has been improved by 

using the inter-member dependency rule. 

 

Figure 5. An example of removing false concave and forming vegetation objects.  

(a) Original vegetation members; (b) after removing the false concaves; and (c) vegetation 

objects (cyan sketched). It can be seen by comparing Figure 5a,c that most concave 

members within larger vegetation patches are tree crown shadows and can be readjusted by 

self-adaptive area filtering. The test-site locates at Sub-site 1 (See Figure 1a). 

 

3.3.4. Refining Vegetation Objects 

The originally generated dual-temporal vegetation objects sometimes are insufficiently accurate for 

change detection and they can be refined by human–computer interaction. There are two new 

algorithms developed for the refining. One, named as hitting algorithm, is effective in locating the 

false-present objects and the other, the point expansion algorithm, can be used to generate the  

false-absent objects. 
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(1) Hitting algorithm 

In the following, VS0 is used to denote the binary image of the originally extracted vegetation 

objects. It is relatively easier to locate the over-extracted patches because they already exist in VS0. By 

the conventional hitting algorithm, a false-present object can be located when being hit by cursor. 

(2) Point expansion algorithm 

However, to determine a false-absent object is another thing. Its absence from VS0 is resulted from 

the situation that the majority of pixels in it likely deviate from the mass center of its class in a given 

feature space. A new algorithm, referred to as the point expansion, has been explored to capture such 

pixels. Figure 6 gives an example. 

Figure 6. An example of refining vegetation objects. (a) A case-fitting process at a mouse 

click event. Weight P will make the width of the buffer gradually narrowed (in this case 

P from 0.5 to 0.2); and (b) an example of the refining. The newly captured objects 

(sketched by magenta lines) reveal that the point expansion algorithm works well. 

 

Our experiments have revealed that there is a good separability between vegetation and background 

in the NDVI–NDSV space. Thus the point expansion is conducted through the following steps: 

(1) taking a cursor-pointed pixel and its neighboring pixels as the samples; (2) deriving a NDVI–NDSV 

relationship from these samples by a two-order nonlinear fitting; and (3) conducting a seeded region 

growth within a buffer along the relationship and with these samples as the initial seeds to capture 

those always under-extracted vegetation pixels. The growing always begins from a more reliable end 

and searches new vegetation members within the buffer. The weights will make the width of the buffer 

gradually narrowed as the separability worsens. The growing process can be formulated  

as Equation (4). 
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(4)

where V is the result set during one time point expansion; V0 and Vi is the original set and the expanded 

set respectively in the ith iteration; fVI-SV is the NDVI–NDSV relationship from the current sample set; 

seed refers to all the pixels in the sample set; minVI, maxVI, minSV and maxSV are the end values of a 

NDVI–NDSV region decided by the samples; dV = maxSV–minSV; Pi is the weight in the ith iteration. 

ER and T2 will be explained in the following. 

In order to avoid the unexpected entrance of smooth dark background members, a during-growing 

constraint, termed the “expansion rate,” is proposed (Equation (5)). 

( )1 1/i i i iER EA EA EA− −= −  (5) 

where ERi and EAi are the expansion rate and expansion area respectively at the ith step of a  

growing process. 

ER is usually stable during the iteration but increases suddenly when a larger body of dark  

smooth background (e.g., water and shaded roads) enters the iteratively expanding region. Therefore, 

Condition (c) of Equation (4) serves as a constraint on ER to limit the unexpected entrance. T2 is of a 

threshold with an experimental default of 3. It is possible to achieve the best separation between 

shaded vegetation and smoother dark background by adjusting T2. Figure 6 provides an example. 

Additionally, the hitting algorithm and point expansion can also serve as a tool for the late accuracy 

assessment (Section 4.1). 

3.4. The Object-Level Spatial Analysis 

There are three main steps in this phase: (1) detecting spurious changes through use of the object-level 

spatial analysis and then revising both of the dynamic and stable object sets (Section 3.4.1);  

(2) recovering the misjudgments by interaction (Section 3.4.2); and (3) repairing the original  

dual-temporal vegetation object sets by merging the renewed stable into both of them (Section 3.4.3). 

3.4.1. Detecting Spurious Changes 

Before the detection, the dual-temporal vegetation objects are divided into three sets: the added, the 

subtracted and the stable (Badd0, Bsub0 and Bsta0) which denote the new, the disappearing and the stable 

objects respectively through use of per-pixel binary logical operations. There usually are considerable 

spurious changes in the initial dynamic object sets (Badd0 and Bsub0) due to variations in sun angle and 

sensor look angle. The accuracy of the stable objects will also be seriously damaged. The efforts 

mentioned before to improve the accuracy of the member can merely reduce the area of a  

pseudo-change patch and make it easier to be detected in this step. 

The dependency rule for the object-level spatial analysis is potentially available by assessing how 

closely a dynamic object is located to a stable one. For example, a dynamic object will be most likely 

of a part of a stable one if the area of the former is far less than that of the latter and they have long 
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shared boundaries at the same time. Assessed by such an inter-object dependency rule, most spurious 

changes can be detected. The rule can be formulated as Equation (6). 


=

=
n

i
iFF

1  
})(&2||0)(&|),({ 40)(30)(300 TBFTABFTAFBBFF staidilaistaidilaiisubaddii >∩⋅<>∩<∪⊆=  

(6)

where F is the spurious-change object set; Fi is the ith object in F; Ai is the area of Fi; Fdila=Badd0 ⊕  se 

or Fdila=Bsub0 ⊕  se where ⊕  is the sign of morphological dilating and se is the structural element 

(usually a 3-by-3 disk); Fdila(i) is the ith object in Fdila; n is the number of spurious-change patches. T3 is 

the upper area threshold which is generally assumed to be involved with image resolution and is 

therefore associated with the height (r) and width (c) of an image and T3 = ROUND(w·(r + c)·0.1) 

where w is the weight with the default of 1 which is of a reserved parameter and should be increased as 

the spurious changes are under assessed and vice versa; T4 is the lower length limit of the shared 

boundaries which is associated with Li (the perimeter of the ith dynamic object) and T4 = Li/4. 

The rule can be linguistically described as: (1) when a dynamic object is located at an end of a  

stable one, the area of the former is smaller than T3 and the intersection of the dilated former and the 

latter is not empty; (2) when a dynamic object is near a side of a stable one, the two objects have 

length-sufficient shared boundaries and the area of the former is smaller. If any of the two conditions is 

satisfied, the former will be added to F. Then all the objects in F will be merged into Bsta0 and will also 

be removed from their original sets at the same time. Figure 7 gives an example of this process. Bsta, 

Badd and Bsub represent the renewed sets from Bsta0, Badd0 and Bsub0, respectively. It is revealed by the 

accuracy assessment that more than 97% of spurious-change objects can be detected. 

Figure 7. An example of vegetation change detection with spatial analyses. (a) The initial 

stable and detected spurious-change objects in a case site (in the orange rectangle in  

Figure 7b; (b) and (c) the readjusted objects with the back images of date 1 and date 2, 

respectively. 
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3.4.2. Recovering Misjudgments by Human–Computer Interaction  

Another version of the hitting algorithm for recovering the misjudgments has been explored. Some 

recovering operations will be executed in accordance with the properties of mouse click events. Either 

a hit dynamic object will be reassigned to Bsta or the hit part from a stable object will be recovered for 

its original dynamic status. If the differences between before and after the revisions are referred to as 

errors, the new version of the hitting algorithm can also serve as a tool to assess the accuracy of 

vegetation change detection. 

3.4.3. Repairing Dual-Temporal Vegetation Objects 

It is not rare that a vegetation object is less shaded by buildings or with no building shelter in one of 

the image pairs due to variations in sun angle and sensor look angle. The objects in F usually indicate 

the variations. Therefore, taking these objects as supplements, the shaded and the obscured vegetation 

objects can be repaired afterwards. Figure 8 provides an example. 

Figure 8. An example of repairing vegetation objects by the renewed stable objects.  

(a) Original vegetation objects (cyan-line sketched); (b) the stable objects in Bsta (cyan-line 

sketched) and the original vegetation objects (white patches), and (c) the repaired vegetation 

objects (cyan-line sketched). It can be seen that the repair will make the vegetation objects 

much more complete and accurate than usual. 

 

4. Results and Discussion 

In this section, the accuracy of extracting vegetation object and detecting spurious change will be 

assessed separately. 

Both the extraction and detection address only binary splitting. The former divides pixels into 

vegetation and background and the latter divides the vegetation objects into dynamic and stable ones. 

Instead of using the confusion matrix which is fit for assessing the accuracy of classification between 

multiple classes, we use the relative errors to indicate the splitting mistakes. In addition, the incorrect 

vegetation objects, including under and over extracted ones, and the incorrect changes, including false 

stable and false dynamic ones, cannot become aware before the vegetation objects being extracted and 

the changes being detected. In most cases, such objects may not be collected as the reserved  

checking-samples for accuracy assessment in the sampling phase since they usually do not have the 
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typical appearances of their respective classes. Therefore, they were practically collected as accurately 

as possible by human–computer interaction with the hitting and the point expansion algorithms to 

guarantee an objective assessment. 

4.1. The Accuracy of Extracting Vegetation Object 

Four scenes (Figure 3 through Figure 6) are for the accuracy assessment and Table 2 provides the 

results. Different combinations of spatial analyses are tested in each example to ensure both the spatial 

analyses at the levels of pixel and members. The feature space, the model of classifier and the original 

classes are the same as those of the example in Section 3.2. 

As mentioned previously, the false-absent and false-present patches in the original object set can be 

located and then repaired by human–computer interaction. The differences between before and after 

the repair are referred to as errors for the accuracy assessment (Table 2). It can be seen that the 

accuracy of automatic extraction of vegetation objects with both the pixel and the member-level spatial 

analyses is pretty good and only few of them need to be recovered by the interaction. The errors are no 

more than 2.56%, 7.04% and 12.15% for the cases of with both the pixel and the member-level spatial 

analyses, with only the pixel-level spatial analysis and with no spatial analysis respectively. 

Table 2. Assessment of accuracy of extracting vegetation object. AVS is the area of total 

vegetation; Eunder = (Aunder/AVS ) × 100(%) and Eover = (Aover/AVS) × 100(%) where Aunder and 

Aover are the area of the false-absent and the false-present, respectively. Etotal is the 

maximum error and Etotal = Eunder + Eover. 

Figure 

No. 

AVS 
(pixels) 

Error with no  

Spatial Analysis (%) 

Error with the Pixel-Level 

Spatial Analysis only (%) 

Error with Both the Pixel and 

Member-Level Spatial Analyses 

(%) 

Eunder Eover Etotal Eunder Eover Etotal Eunder Eover Etotal 
4 335,340 2.66 5.48 8.14 0.86 4.44 5.30 0.47 0.51 0.98 

5 195,250 1.63 7.04 8.67 0.87 6.17 7.04 0.85 1.71 2.56 

6 108,640 2.98 9.17 12.15 2.33 1.74 4.08 1.34 0.5 1.84 

3 191,510 1.26 9.57 10.83 0.77 1.58 2.34 0.46 0.81 1.27 

Mean 2.13 7.81 9.95 1.21 3.48 4.69 0.78 0.88 1.66 

Maximum 2.98 9.57 12.15 2.33 6.17 7.04 1.34 1.71 2.56 

4.2. The Accuracy of Detecting Vegetation Changes 

The accuracy assessment is carried out through use of the hitting algorithm mentioned in  

Section 3.4.2. The differences between before and after the repair are referred to as errors. Four pairs 

of images provided in Figures 7 and 9 are for the assessment and Table 3 provides the results.  

The assessment follows the first three steps of the object-level spatial analysis given in the beginning 

of Section 3.4. 

The data in Table 3 reveal that the accuracy of detecting spurious changes through use of the  

object-level spatial analysis is also so good that only a few of objects are misjudged by computer. The 

objects need to be recovered by human–computer interaction is only 2.03% on average and no more 

than 3.26% out of all the dynamic objects in area. The interactive recovery is likely required to deal 
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with the off-nadir issues when vegetation locates close to higher buildings (e.g., the object pointed by 

red arrow in Figure 9c1). 

Figure 9. Three additional examples for the accuracy assessment of detecting vegetation 

changes. The years of the image pairs are: (a) 1993/2003; (b) 2000/2005; (c) 2003/2006 

and all of the left ones take the image of date 1 as the background and the other the image 

of date 2. 

 

Table 3. Assessment of accuracy of detecting vegetation change. Adyn0 is the area of total 

initial dynamic objects; Adyn is the area of the dynamic objects after the interactive 

recovery. Ddyn = (Adyn − Adyn0) × 100/Adyn0. Davg and Dmax are the average and the maximum 

of Ddyn, respectively. 

Figure No Year Image size Adyn0 (pixels) Adyn (pixels) Ddyn (%) 

7 2000/2003 1020 × 1125 80,756 83,392 3.264779 
9a 1993/2003 441 × 496 47,245 48,393 2.43081 
9b 2000/2005 512 × 496 29,681 29,538 −0.48345 
9c 2003/2006 893 × 954 67,890 66,566 −1.94967 

Davg = 2.03%; Dmax = 3.26% 
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5. Conclusions 

This paper presents a novel method to improve change detection accuracy of the urban vegetation 

using high-resolution remote sensing images. The following conclusions can be supported by the 

aforementioned work. (1) The proposed approach takes advantage of series of spatial analyses at  

multi-levels which can help to significantly reduce the error of the extracted objects and the detected 

spurious changes; (2) All the spatial analyses in different levels connect one after another and each of 

them has been proved to be indispensable in the entire process. The errors from the automatic 

extraction of vegetation objects are no more than 2.56%, 7.04% and 12.15% for the cases with both 

pixel and member-level spatial analyses, with only pixel-level spatial analysis, and with no spatial 

analysis, respectively. The error from the automatic detection of spurious changes with the object-level 

spatial analysis is no more than 3.26%. It means that only no higher than 2.56% of incorrectly 

extracted vegetation objects and 3.26% of misjudged dynamic objects need to be recovered by  

human–computer interaction; (3) The limitation of the approach is mainly caused by the dependence 

on the position matching of two date images; otherwise the error from the detected spurious changes 

would increase heavily. However, the accurate position matching in a dense high-rise building area is 

difficult to reach because parts of the reference points in the ground for the matching are often 

sheltered by buildings. Thus, a method with better tolerance to this shortcoming is appreciated. 
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