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ABSTRACT
Extracting ground surface from high-density point clouds collected by
Mobile Laser Scanning (MLS) systems is of vital importance in urban
planning and digital city mapping. This article proposes a novel
approach for automated extraction of ground surface along urban
roads from MLS point clouds. The approach, which was designed to
handle both ordered and unordered MLS point clouds, consists of
three key steps: constructing vertical profile from MLS point clouds
along the vehicle trajectory; extracting candidate ground points using
an adaptive alpha shapes algorithm; refining the candidate ground
points with an elevation variance filter. To evaluate the performance
of the proposed method, experiments were conducted using two
types of urban street-scene point clouds. The results reveal that the
ground points can be detected with an error rate of as low as 1.9%,
proving that our proposed method offers a promising solution for
automated extraction of ground surface from MLS point clouds.
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1. Introduction

In recent decades, laser scanning technology has become one of the most efficient
surveying techniques for acquiring detailed and accurate 3D data. The laser scanners can
be deployed on platforms that are airborne, terrestrial or mobile. As an airborne laser
scanning technology, light detection and ranging (LiDAR) has produced large volumes
of highly accurate and densely sampled topographical measurements (1~5 m spatial
resolution) (Wu et al. 2015). Mobile laser scanning (MLS) systems, an alternative platform
for laser scanning, provide an even more accurate way for mapping topography, build-
ings, vegetation and other road objects in urban areas (Wu et al. 2013; Yu et al. 2010).
With the increasing availability of MLS data, there is a call for automated algorithms and
software tools for efficiently segmenting and extracting objects of interest from MLS
point clouds (Yang and Fang 2014). However, due to the huge data volumes, variable
point densities, complicated scene structures and occlusion of features by moving
objects, automated segmentation and recognition of objects from MLS point clouds
have become a big challenge (Yang and Fang 2014).
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The extremely high density point clouds collected by MLS systems in urban areas might
contain various types of objects, such as buildings, roads, cars, poles, pedestrians and
trees. In general, the MLS point clouds can be classified into ground and non-ground
points. Filtering out non-ground points and extracting ground points are essential for
many road inventory studies (Pu et al. 2011; Yu et al. 2015). It helps to minimize the data
volume and make the subsequent analysis efficient and straightforward (Yu et al. 2015).
Extracting ground points from MLS point clouds mainly includes the procedure of
differentiating 3D points that belong to ground surface from non-ground ones. Besides,
other research has shown that the organization pattern (ordered or unordered) of the
point clouds can be effected by mounting position of the laser scanner(s) (Lim et al. 2013).
So far, many efforts have been made to address this problem. The existing ground-filtering
approaches can be divided into several categories: morphological filter (Hernandez and
Marcotegui 2009), linear prediction (Lam et al. 2010), triangulated irregular network
(Jaakkola et al. 2008) and cluster (Biosca and Lerma 2008). However, these approaches
mostly developed for unordered MLS point clouds have difficulty in handling complicated
ground surfaces and induce high computational complexity (Zhou et al. 2014). More
recently, the scan-line-based approach which detects local ground points with slope
and elevation along a series of scanning lines was introduced by Hu, Li, and Zhang
(2013) and Zhou et al. (2014). Although the scan-line-based approach has been proven
to be efficient, there are still some limitations in dealing with unordered MLS point clouds
which are lack of the characteristics of the scanning line’s order.

In this article, we proposed a new approach for automated detection and segmentation
of ground points from MLS point clouds acquired along urban roads. The contributions of
the article are as follows: (1) an automated ground points extraction algorithm was
designed to be applicable for both sloping ground and complex urban scenes irrespective
of the organization pattern (ordered or unordered) of the input data set; (2) an adaptive
version of alpha shapes algorithm was employed to detect candidate ground points.

2. Proposed algorithm

The proposed method consists of following three key steps.

2.1. Vertical profile construction

To reduce computation time and to make the point clouds manageable, a number of
methods have been proposed to partition the MLS point clouds into consecutive road
cross sections and their corresponding profiles at a certain interval (Yu et al. 2015; Yang,
Fang, and Li 2013). These profiles were used as the basis for the further profile images
generation which cannot represent the sharp surface fluctuations of ground surface.
Therefore, the existing profile-generation methods are not suitable for ground points
detection. Compared with those methods, the vertical profile construction we proposed
is a continuous profiling process that partitions the raw point clouds into a series of
sequential isometric strips and then generates 2D point sets after a centre plane
projection. This process can handle both unordered and ordered MLS point clouds
without missing details. It is an essential step for preparing data for subsequent analysis.

In order to illustrate the procedure of vertical profile construction, a local coordinate
system needs to be defined first. It is defined using the following rules:
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(1) The origin (O) of the local coordinate system is set at the first point of a trajectory
segment.

(2) The xy horizontal plane: x-axis is along the direction of motion of the vehicle,
while y-axis is perpendicular to the x-axis along the counterclockwise direction in
the horizontal plane.

(3) z-axis points upward to form a right-handed coordinate system.

The direction of x-axis and y-axis could be changing from time to time, because the
roads are not always straight. A common strategy to deal with these issues is to partition
the point clouds into smaller straight segments along the road according to the
trajectory points (Wu et al. 2013; Pu et al. 2011). For each small straight road segment
(Figure 1(a)), the direction of x-axis can be determined by the corresponding trajectory
points. Subsequently, the individual local coordinate system is constructed with the
aforementioned rules. Sequential construction of the local coordinate systems from
segment to segment along the road would improve the operating efficiency.

After the establishment of the local coordinate system, a series of strips
S1;S2; . . . ;Snf g are created. Figure 1(a) illustrates the process of strips creation in a

schematic scene with a plan view. Strips with an identical width of d are established
along the direction perpendicular to the direction of motion of the vehicle trajectory on
the xy plane. Figure 1(b) shows a real 3D view of the associated strips and the point
clouds. After establishing the strips, all the points are carved up into different strips.

For each strip, the centre axis and the centre yOz plane are identified. The
points located in each strip are projected to the centre yOz plane. Each point has the
same x coordinate xSi ; the plane point set can be described as PSi¼
p1;p2; . . . ;pmf g; i 2 1; 2; . . . ;nð Þ, in which a point pi i ¼ 1; 2; . . . ;mð Þ is represented by

(xi;yi;zi) in the 3D coordinate system. Therefore, the point set lying in the yOz plane
reflects the profile along the centre axis.

2.2. Locally candidate ground points detection

The concept of alpha shapes (α-shapes) was first introduced in the late 1980s as an attempt
to define the shape of a point set on a plane (Edelsbrunner, Kirkpatrick, and Seidel 1983). It is
a series of piecewise linear simple curves used to describe the polygonal contour of a finite
set of points on the Euclidean plane. The alpha shapes have been widely used to find the
outline of an unorganized set of data points (Da 2015; Edelsbrunner 2010).

Figure 1. Sketch of the principle of strips construction for a road segment. (a) Strips construction; (b)
3D view of strips and point clouds.
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According to Edelsbrunner (2010), the alpha shapes (ψT) of a finite spatial point set T
can be defined as the intuitive notion of the boundary shape that contains all points of
T. It is determined by the point set T and a positive number α, which controls the
resulting shape of the boundary of T (Equation 1).

ψT ¼ F T;αð Þ (1)

In general, larger α defines a more compact boundary of the point set. The alpha shapes
approximate a common convex hull when α is near zero (Edelsbrunner 2010). The smaller
the distance between adjacent points (high point density), the more compact will be the
point set. Consequently, the value of α in areas with large distance between adjacent points
(low point density) is smaller than those in regions with small distance (high point density).
The alpha shapes algorithm works properly in finding the boundary points, but there are
some limitations. For example, it is difficult to find a satisfying alpha value which would not
exclude too many boundary points that reflect the detailed boundary structure. Therefore,
we developed an adaptive alpha shapes algorithm based on the traditional algorithm.

In contrast to the traditional alpha shapes, the adaptive alpha shapes (EψT
) which

work on the point set PSi are determined by a function, F, which is based on four
parameters (Equation 2): (1) a point set T; (2) a positive number α; (3) a constrained
rotation angle θ and (4) a constrained process range L.

EψT
¼ FðT;α; θ; LÞ (2)

Here, EψT
represents the boundary points and T is the point set PSi . The variable α is

designed to control the level of detail reflected by the adaptive alpha shapes. It changes
continuously when the adaptive alpha shapes algorithm is executing. If a neighbour-
hood of a point in T is the next/previous one of the point in the sequence after sorting
based on the y coordinate, the α can be defined as the reciprocal of the planimetric
Euclidean distance between the current point and the next neighbour (Edelsbrunner,
Kirkpatrick, and Seidel 1983) (Equation 3):

α ¼ 1=dist pi;piþ1

� �
(3)

where dist() is a distance function that calculates the planimetric Euclidean distance
between two points. If the minimum and maximum planimetric Euclidean distances
between any two nearby points in point set PSi are Rmin and Rmax respectively, then α

ranges from 1=Rmax to 1=Rmin. The constrained rotation angle θ controls the slope of the
segment of the adaptive alpha shapes which represent the local slope of the ground
surface. As shown in Figure 2(b), θ = 0° is defined as the negative direction of z-axis and
positive θ increases along a counterclockwise direction. The constrained process range L
determines the range between the beginning and end points which are decided by the
minimum and maximum y coordinate (Lmin and Lmax), respectively. Figure 2(a) shows a
schematic example of the adaptive alpha shapes algorithm run as a ball-pivoting way. A
ball pivots from Lmin to Lmax. First, a ball of an initial diameter 1=αmax is placed at the
beginning point (Lmin). The ball cannot pass through the point set without touching its
nearby points. In its pivoting motion, if there is no point hit by the ball in a given rotation
angle range (0° to θ), αwill be adaptive to a new value αnew by subtracting a certain interval
αth ( αmax � αminð Þ=100). Then the size of the ball will be changed with the new value αnew.
The new ball will pivot again to find whether a nearby point is hit or not. If yes, the hit point
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will be marked as a candidate boundary point and used as a new starting point to repeat
the aforementioned process. Otherwise, α will be recalculated until the ball touches one
nearby point. The above process is repeated, round by round, until the ball reaches the end
point (Lmax) and finally all the candidate boundary points have been identified.

Here, the locally candidate ground points, which are used as the seed ground points
in each strips, are identified in each individual point set PSi using the adaptive alpha
shapes algorithm. The procedure mainly consists of following two components.

2.2.1. Detection of the starting point of the ground.
To get reliable starting point along the point set, the starting point should be deter-
mined by the location of the vehicle trajectory. As any position of the vehicle trajectory
can be calculated, the intersection point of the vehicle trajectory and the profile plane
can be estimated according to the coordinate xSi . For those points (xSi ;yi;zi) in the profile
plane that are near the intersection, the one that satisfies the criterion defined in
Equation 4 is selected as the starting ground point pSiðxSi ;ySi ;zSiÞ for the profile plane:

min zSi�zij jf g (4)

This rule makes the point lying below the intersection point with a minimum height
difference is considered as the seed ground point.

2.2.2. Execution of the adaptive alpha shapes algorithm.
Considering the curbs, low vegetation and other road objects may exist on the road
surface, the traditional slope-based method may lead to the omission errors for a fixed
threshold. Therefore, we developed the adaptive alpha shapes algorithm to identify the
remaining candidate ground points in the current sequence of points based on the
position of the seed ground point. Since the seed ground point can be located anywhere
within the point sequence, it is necessary to search both directions (Figure 3(a)). For each
direction, the adaptive alpha shapes start from the seed point pSi , with α controlling the
search radius and Lmin together with Lmax keeping the adaptive alpha shapes algorithm
running within the constrained range. Whenever a qualified point is found, it will be added
into the seed ground point set G ¼ pSi ; . . .

� �
and used as the seed point for the next round

of searching. If no qualified points are identified, the alpha adaptive shapes will adapt its
size to repeat the searching, until it reaches the end (Lmin or Lmax).

Figure 2. The adaptive alpha shapes. (a) A ball pivots from Lmin to Lmax. The pivoting ball is first placed in
Lmin. In its pivoting motion, if the ball hits one point in a given rotation angle range, the hit point will be
marked and regarded as a start point to continue the searching process. Otherwise, the diameter of the
ball will be changed with a new α value until the ball touches one point; (b) Definition of rotation angle θ.
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It should be noted that when the urban objects are lower than the initial slope
threshold δth, some candidate ground points extracted by the aforementioned proce-
dure might actually belong to these non-ground objects. This issue often happens when
the distance between two adjacent points is large. A validation process for those distant
points is thus necessary. The point set G is first sorted according to the y coordinate. For
any three neighbouring points which have significant difference of the y coordinate in
the point set G, the following criterion should be satisfied:

θi;iþ1 < δth and θi;iþ2 < δth (5)

where θi;iþ1 represents the slope between two neighbouring points. Otherwise, the
(i + 2)th point would be excluded from G because of the large slope θi;iþ2. The extraction
result is showed in Figure 3(b).

2.3. Elevation variance filtering

The elevation variance filter was designed to optimize the coherence of ground points in
the strip within a defined neighbourhood of each candidate ground point by filtering
out non-ground points. The elevation variance Dpg is defined by

Dpg ¼ E z� E z½ �ð Þ2
h i

g ¼ 1; 2; . . . ; kð Þ (6)

where pg is the point in G; z represents the elevation of each point; k is the number of
points in G and E represents the expectation. In general, a large elevation variance
indicates an irregular topography, while a small elevation variance represents a relative
flat site (e.g., ground surface).

For each pg xg;yg;zg
� �

, its neighbourhood is defined by a search radius threshold
which equals the width, d, of the strip (Si). All the points located in the neighbourhood
are first sorted in ascending order of the elevation difference to zg. Each sorted point is
added into the Equation 6 in sequence for calculating the elevation variance. If the
current elevation variance satisfies the criterion given by

Dpg<Dth (7)

Figure 3. The ground points extraction. (a) The adaptive alpha shapes search both directions; (b)
The extraction result.
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where the threshold Dth is tolerance of elevation variance, the added point will be
marked as ground point. The next point in the sorted point set is added to continue the
next round of the variance calculation with the labelled ground points. If the criterion
specified in Equation 7 is not satisfied, the process will stop and the remaining points
will be marked as non-ground points. The above-mentioned process is repeated for each
point in G. All strips from S1 to Sn are processed sequentially with the elevation variance
filter. Finally, the point clouds can be segmented into ground and non-ground parts.

The aforementioned step-wise extraction algorithm has been implemented using
Microsoft Visual C#.NET programming language and ArcObjects SDK for .NET. In the
algorithm, three parameters d; δth;Dthf g can be specified by the user, which will be
discussed in Section 3.3.

3. Experimental results and discussion

3.1. Input data and threshold selection

Two case studies (Figure 4(a) and Figure 4(c)) are demonstrated to evaluate the validity
of the proposed method. The MLS point clouds of Study Area I (Figure 4(a)) is an
unordered data set acquired using a vehicle-mounted MLS system from East China
Normal University (Wu et al. 2013). The MLS system was equipped with two laser
scanners which have a valid scanning range of 80 m and a 180° field of view and one
scanner heads upward while the other downward (Wu et al. 2013). The raw point clouds
consist of 12,371,798 points covering a 4.5 km length urban street road and the average
point density is 104 points/m2. The Study Area II (Figure 4(c)) is a campus road and has a
length of 913 m. The point clouds consist of 1,017,108 points and the average point
density is 72 points/m2. It is an ordered data set obtained from Carnegie Mellon
University (CMU) which was collected using the Navlab11 vehicle equipped with side
looking SICK LMS laser scanners (Munoz et al. 2009). Buildings and other urban objects,
such as street trees, lights, curbs and cars, were distributed along the road. Both land-
scapes had flat ground as well as sloping ground. Considering the complexity of land-
scapes in these two study areas and the computational efficiency of the proposed
algorithm, the following parameters were used: d = 0.2 m, δth = 20°, and Dth= 0.05.

Figure 4. Case studies. (a) The original laser scanning point clouds of Study Area I; (b) Identified
ground points of Study Area I; (c) The original laser scanning point clouds of Study Area II; (d)
Identified ground points of Study Area II.
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3.2. Performance evaluation and comparison

The results shown in Figure 4(b) and (d) demonstrated that the proposed method
successfully extracted the ground points in both case studies. The details of the ground
were well preserved.

According to Hu, Li, and Zhang (2013) and Zhou et al. (2014), the accuracy of ground
points extraction algorithm can be evaluated by two types of errors: (1) rejection of the
ground points (Type I error), and (2) acceptance of the non-ground points as ground
points (Type II error). The point clouds in the Study Area II is a standard data set that has
the segmentation label (hand-labelled) which can be directly used for verification. For the
Study Area I, the manual segmentation result was used as the reference to calculate the
error rate. The proposed method presents a total error rate of 3.561% (Type I
error = 2.453% and Type II error = 1.108%) for Study Area I and 1.991% (Type I
error = 1.124 % and Type II error = 0.867%) for Study Area II. This is comparable to the
results reported in previous studies using ordered MLS point clouds (e.g., 0.674% reported
by Zhou et al. (2014) and 8.240% reported by Hu, Li, and Zhang (2013)) and the results
reported by using ALS point clouds (e.g., approximately 30% to 2% with nine ground
filters tested on relative flat urban sites reported by Meng, Currit, and Zhao (2010)).

3.3. Discussions

The proposed method can be applied for both the ordered or unordered MLS point
clouds. In the first step, the vertical profile construction procedure converting MLS point
clouds into a series of vertical profiles is presented for reducing the dimension of
complex data sets and making the computation manageable. An adaptive alpha shapes
algorithm is employed to detect candidate ground points from the profiles. It achieves
self-adaptability through a positive number α. There is no need to determine a fixed
alpha value for the alpha shapes. Finally, an elevation variance filter is designed to
identify ground points in the neighbourhood of each candidate ground point which
ensures that the local slope of the ground surface is locally consistent and smooth.

Three parameters d; δth;Dthf g need to be determined in the proposed method. The
threshold d varies based on the input MLS point clouds. It might be difficult to automati-
cally adjust the threshold d for different MLS point clouds without prior knowledge. In this
study, a range of d (from 0.1 m to 1 m) for ground points extraction in the sample area (red
box in Figure 4(a)) was conducted to evaluate its impact on the accuracy of the ground
point extraction, and the results are shown in Table 1. It is clear that the Type I error rate
increases when d changes from 0.1 m to 1 m and the Type II error rate is relatively stable
when d changes from 0.2 m to 0.4 m. The results suggest that there is no significant change
for the total error rate when d increases from 0.2 m to 0.4 m. For ordered MLS point clouds,
d can be set to the distance between two neighbouring scanning lines, while for unordered
data set, d can be determined by the point density. It is assigned to a larger value for low-
density point clouds and a smaller value for high-density data. The parameter δth is decided
by the degree of local roughness of the topography on the ground surface. Previous studies
(e.g., Zhou et al. 2014; Hu, Li, and Zhang 2013) suggested that the parameter δth be set to
10°–20° for urban areas. The parameter Dth determines the quality of the extracted ground
points. A large value for Dth will increase Type II error, while a small Dth will increase Type I
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error, leading to an incomplete ground points extraction. Therefore, it is recommended to
set a smaller Dth for relatively flat urban street and a larger Dth for rough urban street.

The two case study areas presented are typical street scenes in urban landscapes. By using
the adaptive alpha shapes and elevation variance filter, there were only a few non-ground
points that were falsely identified as ground points, and the Type II error rate is very low. The
reason why the Type I error rate is higher than the Type II error rate is probably due to the
existence of large gaps and isolated points in the point clouds. For urban surface with more
complex structures, the pre-processing steps aforementioned would improve the extraction
results. Besides, the continuity of the ground points could be influenced by higher urban
objects as a result of the gap between two neighbouring ground points being larger than the
normal distance. In this case, the isolated ground points would fail to be identified.

4. Conclusion

In this article, we proposed a novel approach for ground surface extraction in complex urban
scenes from Mobile Laser Scanning (MLS) point clouds. It can be used for both ordered and
unordered point clouds. This approach consists of three key steps: (1) the vertical profiles
construction; (2) the locally candidate ground points detection and (3) the elevation variance
filtering. More importantly, an adaptive version of alpha shapes algorithm for extracting
candidate ground points is put forward. Two case study areas have been applied to evaluate
the performance of the approach. The results demonstrated that the ground surface points
can be extracted at a very high accuracy. We hope that this study could enlighten more
applications of MLS point clouds in urban object extraction.
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Table 1. The impact of the size of the strip width d on the accuracy of the
ground point extraction.
d (m) Type I error (%) Type II error (%) Total errors (%)

0.1 0.606 1.902 2.508
0.2 0.624 0.218 0.842
0.3 0.918 0.347 1.265
0.4 0.926 0.476 1.402
0.5 1.011 0.928 1.939
0.6 1.104 1.003 2.107
0.7 1.858 1.370 3.228
0.8 2.654 1.608 4.262
0.9 3.272 1.809 5.081
1.0 3.927 2.104 6.031
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